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Neuroscientists spent decades debating whether synaptic

plasticity was presynaptically or postsynaptically expressed. It

was eventually concluded that plasticity depends on many

factors, including cell type. More recently, it has become

increasingly clear that plasticity is regulated at an even finer

grained level; it is specific to the synapse type, a concept we

denote synapse-type-specific plasticity (STSP). Here, we

review recent developments in the field of STSP, discussing

both long-term and short-term variants and with particular

emphasis on neocortical function. As there are dozens of

neocortical cell types, there is a multiplicity of forms of STSP,

the vast majority of which have never been explored. We argue

that to understand the brain and synaptic diseases, we have to

grapple with STSP.
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A definition of synapse-type-specific plasticity
Here, we define synapse-type-specific plasticity (STSP)
as plasticity that varies with synapse type. STSP comes
in different forms (Figure 1). Different synapses origi-
nating from the same presynaptic cell can have different
forms of plasticity depending upon the on postsynaptic
target, here termed divergent STSP. Conversely, plas-
ticity may differ for the same postsynaptic cell depend-
ing on the type of input, which we denote convergent
STSP. While more difficult to distinguish experimen-
tally, STSP also encompasses plasticity that varies at the
level of individual synaptic contacts between one pre-
synaptic axon and individual postsynaptic neuron. In
this review, we discuss examples of all three forms of
STSP.

STSP should not be mixed up with synapse or input
specificity in classical plasticity studies. A form of long-
term plasticity that is input specific does not spread
appreciably to neighboring synapses that were not stimu-
lated during the induction of plasticity [1]. In other words,
STSP may or may not be input specific. In the case of
long-term plasticity, STSP is therefore not directly relat-
ed to either homosynaptic or heterosynaptic plasticity [1].

Synaptic plasticity may vary in several different ways.
STSP may thus refer to distinct specificities in terms of
phenomenology of plasticity, induction mechanism, and/
or expression mechanism. Finally, STSP may also refer to
either short or long-term plasticity, and we review both
these scenarios here below, starting with the former.

Synapse-type-specific short-term plasticity
Short-term plasticity (STP) refers to a depression or
facilitation of synaptic efficacy that last on the order of
seconds [2]. The mechanisms underlying STP are typi-
cally presynaptic, including changes in the readily releas-
able vesicle pool size, changes in the number of release
sites, and alterations in presynaptic calcium dynamics [3].
Early evidence that STP could be synapse-type-specific
came from observations that the magnitude and variabili-
ty of calcium influx in response to single action potentials
was not uniform across a single axon collateral [4,5]. In
addition, these differences in calcium influx across a
single axon have been shown to contribute to distinct
vesicular release probabilities at individual synapses [6,7].
Synapse-type-specific STP thought to result from such
differences has been observed in both neocortex and
hippocampus [8,9!!,10]. These differences in STP are
also likely correlated with differences in synaptic mor-
phology. For example, the number of docked vesicles is
known to be correlated with both presynaptic release
probability and the readily releasable synaptic vesicle
pool [11,12]. However, differences in docked vesicles
do not account for different STP at different presynaptic
terminals onto the same postsynaptic cell [13], suggesting
these ultrastructural measurements may not always be
sufficient to infer synapse-type-specific STP alone.

STP differs with both presynaptic and postsynaptic cell
type, suggesting that specific trans-synaptic signaling
mechanisms define STP at a given synapse. These mech-
anisms are poorly understood, but recent findings suggest
that extracellular leucine-rich repeat proteins such as
Elfn1 trans-synaptically regulate synapse-type-specific
STP [14!!]. In hippocampus, Elfn1 is selectively
expressed at somatostatin but not parvalbumin-positive
interneurons, where it signals retrogradely to increase
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facilitation at glutamatergic inputs. Adhesion molecules
such as cadherins, neuroligins, or SynGAP also regulate
synaptic dynamics [15!,16,17,18]. In addition, recent
studies suggest that synapse-type-specific STP is influ-
enced presynaptically by RIM, a2d, calcineurin Aa, and
CDK5, proteins that regulate release probability and STP
by altering presynaptic calcium channel expression [19–
21]. Similarly, synapse-type-specific expression of volt-
age-gated Na+ and K+ channels at individual axon bou-
tons may influence action potential waveforms distinctly
at individual synapses [22,23!]. A general mechanism for
the specification of synapse-type-specific STP may there-
fore be cell-type specific expression of Elfn1 or related
molecules, which govern the synapse-type-specific ex-
pression of adhesion molecules. These in turn may
change the expression of voltage-gated ion channels or
presynaptic neurotransmitter receptors, ultimately alter-
ing vesicular release [24].

Genetic programs are not the sole determinants of STP,
as it depends on age and activity. During development,
for example, STP generally becomes less depressing
[25–30]. This developmental change, however, is not
homogenous across all synapse types. Connections be-
tween cortical layer 5 (L5) and L2/3 pyramidal neurons
undergo a reduction in synaptic depression through
development, but the reduction is larger at synapses
between L5 neurons [25]. At L2/3 visual cortical neu-
rons, L4 synapses undergo a reduction in short-term
depression through development, but at intralaminar
L2/3 synapses onto the same postsynaptic cell type do
not undergo this change [27,31!!,32!!,33]. These layer-
specific differences in STP may result from different

developmental time points for layer formation [34], and
therefore these differences may not always last into
adulthood.

Developmental alterations in STP may involve both
presynaptic and postsynaptic changes, demonstrating that
synapse-type-specificity is not universally dictated by a
single mechanism. For example, short-range but not long-
range excitatory inputs onto parvalbumin-positive inter-
neurons of visual cortex undergo a developmental reduc-
tion in short-term depression involving both a reduction
in presynaptic release and increase in calcium-permeable
AMPARs [32!!]. In this case, increasing the number of
calcium-permeable AMPARs increases short-term facili-
tation postsynaptically through a reduction in polyamine-
dependent calcium-permeable AMPAR block during re-
petitive presynaptic cell firing [35,36]. Polyamine-depen-
dent facilitation of AMPARs [35,36] and other
postsynaptic phenomenology such as temporal summa-
tion [37] may be general mechanisms for postsynaptically
mediated short-term STSP. In agreement with this view,
CP-AMPARs are only expressed at specific subsets of
synapses [36]. Overall, these findings suggest there is a
developmental synapse-type-specific alteration in STP,
rather than a uniform reduction in synaptic depression
across all synapses.

Sensory experience also alters STP, however it is unclear
whether experience per se is required because such
alterations are also observed in cultured neurons [38];
perhaps neuronal activity is sufficient to drive changes in
STP. Conversely, sensory deprivation alters STP at a
variety of synapses. However, the effect of sensory
deprivation on STP is often inconsistent even for the
same synapse type, with specific types of sensory depri-
vation promoting facilitation but others increasing de-
pression [31!!,39–43]. A number of experimental factors,
including the nature and age of deprivation [39,44], rate
of presynaptic stimulation or firing [31!!], and pharma-
cological receptor blockade [31!!] likely contribute to
such inconsistencies. These developmental alterations
in STP are probably key to regulating neuronal excita-
tion because excitatory short-term synaptic transmission
depresses more when inhibition is still immature [27].
Subsequently, experience may alter STP to enable
reliable information  processing and to promote Hebbian
plasticity.

Recent evidence suggests that synapse-type-specific ex-
pression of presynaptic NMDA receptors (preNMDARs) is
an important determinant of developmental and sensory-
experience driven alterations in STP. Within visual cortical
L5, preNMDARs selectively influence STP at pyramidal
cells synapsing onto neighboring pyramidal cells or onto
somatostatin-positive Martinotti cells, but not onto parval-
bumin-positive basket cells [9!!] (Figure 2a). PreNMDARs
typically modulate STP by acting as a high-pass filter for
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Different forms of synapse-type-specific plasticity. Synapse-type-
specific plasticity (STSP) comes in several different forms. It may be
divergent, in which case synapses from the presynaptic cell type A to
the postsynaptic cell type B do not undergo the same kind of
plasticity as synapses onto type C. An example of this is illustrated in
Figure 2 [9!!]. STSP may also be convergent, so that connections from
presynaptic cell type A onto postsynaptic cell type C do not have the
same kind of plasticity as connections from presynaptic cell type B
onto C do. This scenario is illustrated in Figure 3 [31!!,67!!]. Many
connections in the brain, however, are made from multiple synaptic
contacts [5], and a third possible STSP scenario exists in which
plasticity is contact specific. This scenario is less well studied, but
some studies indicate that different contacts of the same connection
type are very similar with respect to plasticity [5,62!], whereas others
imply that they may be different [52!,60].
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presynaptic release [31!!,45,46]. Through this action, pre-
NMDARs at excitatory synapses onto L5 Martinotti cells
increase frequency-dependent disynaptic inhibition
(Figure 2b–d). Similarly, preNMDARs influence STP at
synapses from L4 neurons onto L2/3 pyramidal neurons,
but not at L2/3 intralaminar synapses [47]. Development
and sensory experience regulate preNMDAR expression,
suggesting that these receptors are well suited for regulat-
ing synapse-type-specific STP [31!!,33,39,48]. Synapse-
type-specific expression of preNMDARs may thus be a
general principle governing the function of this receptor
type. Since preNMDAR expression varies with postsynap-
tic cell identity, we propose that postsynaptic neurons
retrogradely influence the expression of preNMDARs at
specific synapse types. This may occur through postsynap-
tic proteins such as Elfn1, which is known to influence
presynaptic ionotropic receptor expression [14!!].

Synapse-type-specific long-term plasticity
Long-term plasticity refers to activity-dependent changes
in synaptic efficacy that last for minutes up to days [49].
Long-term plasticity is typically mechanistically distinct
from STP and includes processes such as Hebbian
and homeostatic plasticity. Long-lasting increases or
decreases in synaptic strength — long-term potentiation
(LTP) or depression (LTD), respectively — are believed
to be critical to circuit and memory formation [50].
Synapse-type-specific long-term plasticity may thus be
important for adapting synapses to the overall function of
the circuit in which they are embedded.

Homosynaptic forms of long-term plasticity are specific to
activated synapses. The underlying mechanisms can be
synapse-type-specific as well, resulting in differences in
locus of expression or in activity requirements. Classically,
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PreNMDARs synapse-type-specifically reroute information flow in local neocortical circuits. (a) PreNMDARs are synapse-type-specifically
expressed at connections (closed symbols) from pyramidal cells (‘PC’) to other pyramidal cells as well as to Martinotti cells (‘MC’), but not at
connections (open symbols) to basket cells (‘BC’). Circles and triangles symbolize inhibitory and excitatory connections, respectively. (b) A small
network model with synaptic dynamics tuned to experimental data predicted that during 70-Hz pyramidal-cell bursts (vertical lines), preNMDAR
blockade would disrupt late Martinotti but not early basket-cell inhibition. Model prediction before and after preNMDAR blockade in blue and red,
respectively. (c) 70-Hz spiking in pyramidal cell 1 evoked both Martinotti and basket-cell inhibition in pyramidal cell 3. Intermediate Martinotti cell
(‘X’) was not patched. (d) Experiments verified model prediction: amplitude and latency of Martinotti but not basket-cell inhibition was affected by
preNMDAR blockade. In other words, synapse-type-specific preNMDAR expression selectively boosts pyramid to Martinotti cell neurotransmission
during high-frequency firing without affecting pyramidal cell connections to basket cells. Modified with permission from [9!!].
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LTP and LTD are induced by the activation of postsyn-
aptic NMDA, AMPA, and metabotropic glutamate recep-
tors (mGluRs). The expression of these postsynaptic
receptors as well as their presynaptic counterparts varies
considerably with brain region, synapse type, and through
development [51]. At large mature dendritic spines, LTD
requires activation of both NMDARs and mGluRs as well
as calcium release from internal stores [52!,53]. However,

at small immature spines, LTD requires only NMDAR
activation [52!,53]. Since large spines contain more
AMPARs [54], these findings are consistent with syn-
apse-type-specific metaplasticity, in which previous his-
tory of activity alters the subsequent threshold for
plasticity [55]. Indeed, sensory experience and neuronal
activity alter postsynaptic NMDAR subunit expression at
many synapses within the brain [56]. In hippocampal
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Experience-dependent regulation of synapse-type-specific long-term depression at layer 2/3 cortical synapses. In early cortical development,
timing-dependent LTD (tLTD) at L4 to L2/3 synapses requires preNMDARs and can be induced with relatively long action potential-EPSP pairings
(a, c). In contrast, tLTD at L2/3 to L2/3 horizontal connections requires postsynaptic NMDARs and has a shorter tLTD integration window (b, c).
PreNMDAR-mediated tLTD at L4 to L2/3 is developmentally downregulated following the first 3-4 weeks of postnatal development, but this
downregulation does not occur at visual cortical L2/3 to L2/3 synapses [31!!,69]. Thus, in normally reared P85-95 mice, pairing action potentials
with EPSPs generated by optogenetic stimulation of L4 neurons fails to induce tLTD at L4 to L2/3 synapses (d–e, yellow circles). However, visually
depriving mice for 10-15 days during this developmental period restores preNMDAR-mediated tLTD at L4 to L2/3 synapses (e, gray circles). This
effect of visual-deprivation is lost when preNMDARs are selectively deleted from L4 neurons (e, orange circles). Modified with permission from
[31!!,67!!].
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culture, alterations in synaptic activity at single synapses
are sufficient to alter both postsynaptic NMDAR expres-
sion and later outcomes of plasticity, demonstrating that
metaplasticity is an important determinant for synapse-
type-specific long-term plasticity [57]. Synapse-type-spe-
cific differences in the expression of proteins signaling
cascades downstream of neurotransmitter receptors such
as CaMKII and MAPK may also be important for synapse-
type-specific expression of plasticity, but how the expres-
sion of these molecules differs for a given neuron type
based on synaptic source is largely unknown [58]. How-
ever, differences in postsynaptic signaling can influence
multiple forms of long-term plasticity since synapse-type-
specific expression of activity related proteins such as Arc
have been shown to influence synapse-type-specific ho-
meostatic plasticity [59]. The initial properties of long-
term synaptic plasticity may thus be broadly defined in
synapse-type-specific manners. Through alterations in
neuronal activity, synapses may subsequently acquire
specific signaling molecules that enable synapse-type-
specific long-term plasticity.

Dendrite biophysics may also help determine long-term
STSP. For example, distal excitatory synapses onto

neocortical L5 pyramidal cells are less prone to long-term
potentiation than the proximal ones are [60], because
backpropagating action potentials — which determine
potentiation in this cell type — fail to invade distal arbors
[1]. But each synaptic connection is typically formed by
multiple synaptic contacts, some quite distal and some
proximal [61], which implies that plasticity might be
synaptic contact specific, since distal contacts may under-
go LTD when proximal contacts potentiate. Interesting-
ly, in the hippocampal CA1 area, pairs of spines on the
same dendrite that received input from the same axon are
of similar size, whereas spines on different dendrites are
not [62!,63]. Because spine volume is closely correlated
with synaptic strength [12], this is concrete evidence that
plasticity is specific even down to individual synaptic
contacts [5].

PreNMDARs also mediate diverse forms of LTP and
LTD at subsets of synapses, including timing-dependent
LTD at cortical synapses and theta-burst stimulation
induced cortical-striatal LTP [45,64–66]. PreNMDARs
are therefore likely to bias plasticity and circuit modifica-
tion. In early neocortical development, preNMDARs
mediate timing-dependent LTD (tLTD) at L4 to L2/3
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Table 1

Examples of STSP.

Brain region Synapse types Consequences Mechanisms Ref

Visual cortex Excitatory connections from L4
neurons to L2/3 PCs

Experience-dependent regulation of
LTD and STP

PreNMDARs [31!!]

Barrel cortex Excitatory connections from L4
neurons to L2/3 PCs

Experience-dependent regulation of
STP

PreNMDARs [39]

Barrel cortex Excitatory connections from L4
neurons to L2/3 PCs

Trigger LTD PreNMDARs [67!!]

Barrel cortex Excitatory connections from L4
neurons to L2/3 PCs

Upregulate short-term depression PreNMDARs [47]

Visual cortex Excitatory connections between L5
PCs

Evoke LTD and upregulate short-
term depression

PreNMDARs [45]

Visual cortex Excitatory connections from L5 PCs
to MCs

Upregulate dendritic inhibition PreNMDARs [9!!]

Visual Cortex Short-range excitatory connections
from PCs to L2/3 PV-positive basket
cells

Increase short-term facilitation
through polyamine-dependent
AMPAR facilitation

CP-AMPARs [32!!]

Hippocampus Excitatory connections from CA1
PCs to Sst-positive INs

Upregulate short-term facilitation Presynaptic kainate
receptors,
postsynaptic Elfn1

[14!!,78]

Hippocampus Excitatory contacts to CA1 PCs Homogenous STP for synaptic
contacts with the same presynaptic
and postsynaptic cells

Synaptic plasticity [62!,63]

Hippocampus Hippocampal CA3 and CA1
dissociated culture

Regulate presynaptic release
probability through modulation of
calcium channel number and/or
function

VGCC auxiliary
subunit a2d,
calcineurin Aa, CDK5

[19,20]

Hippocampus Large excitatory spines onto CA1
PCs

Regulates spine shrinkage, LTD Type 1 mGluRs,
calcium release from
internal stores

[52!]

Cerebellum Purkinje and basket cell terminals in
dissociated culture

Regulation of STP by control of axon
terminal excitability

Differential Na+/K+

channel ratio
[23!]

Cerebellum Excitatory inputs to granule cells Facilitation of pattern separation Modality-specific STP [73!!]

The studies in this table illustrate in several different brain regions how STSP can be produced mechanistically and what the functional consequences
can be. This list is not intended to be exhaustive.
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synapses [48,66], but tLTD at horizontal L2/3 to L2/3
synapses requires postsynaptic NMDARs [67!!,68].
These mechanistic differences may underlie the consid-
erably longer tLTD window at L4 to L2/3 synapses [67!!]
(Figure 3a–c). Due to developmental downregulation of
preNMDARs, tLTD at L4-to-L2/3, but not at L2/3-to-
L2/3 synapses, is more readily induced in early develop-
ment and becomes increasingly dependent on postsyn-
aptic NMDAR activation in later development [48,69]. In
the visual cortex, dark rearing prolongs preNMDAR-
mediated tLTD at L4 to L2/3 synapses, suggesting
preNMDARs enable specific synapses to uniquely re-
spond to changes in the sensory environment [31!!]
(Figure 3d–e). Taken together, these studies show that
preNMDARs are well positioned for synapse-type-spe-
cific control of both long and short-term plasticity.

Conclusions and future directions
In this review, we have discussed recent research on
STSP learning rules and synaptic dynamics, as well as
their potential functional roles (summarized in Table 1).
We argue that STSP may have evolved of necessity to
enable more complex computations in local circuits. The
existence of STSP is furthermore expected, since the
nodes of biological neuronal networks are made up of
dozens of different cell types [70–72]. Presumably, these
different cell types need to be governed by distinct
synaptic plasticity learning rules, because activity pat-
terns and excitabilities vary tremendously with cell type.
Indeed, it was recently shown that pattern separation in
the cerebellum is enhanced by input-specific STP onto
granule cells, since the distinct activity patterns of mo-
dality-specific afferents means coding benefits from dif-
ferential short-term STSP [73!!]. Furthermore, activity
levels must be kept within reasonable bounds, and it is
likely that one or several interneuron types specifically
adjust their inhibitory influence according to key devel-
opmental events such as eye opening, or in pathological
states such as physical trauma, inflammation, or epilepsy.
Indeed, STSP dysfunction has been observed in a variety
of disease states ranging from schizophrenia [74], Alzhei-
mer’s disease [75], to autism spectrum disorders [76,77],
demonstrating that an understanding of the properties of
STSP may be fundamental to treating neurological dis-
eases.

While there are many mechanisms for regulating STSP,
we have focused on the preNMDAR as one important
example of a determinant of STSP in local circuits that
controls both short-term [9!!] and long-term plasticity
[67!!] and that is linked to the closing of the visual cortex
critical period [31!!]. This preNMDAR focus is not to
imply that this receptor type necessarily holds a special
status in the brain; it is merely a case study and a starting
point for further research on STSP. Indeed, we suggest
that control of STSP by particular receptor types is a
general principle in the brain. For example, presynaptic

kainate receptors also determine STSP, by promoting
facilitation at excitatory inputs onto somatostatin-positive
hippocampal interneurons [14!!,15!,78].

When it comes to complexity, neuronal network comput-
er models are invariably a far cry from their biological
counterparts. In models, synaptic weights typically have
no short-term dynamics, neurons do not accommodate,
that is if they spike at all, and nodes are often perfectly
homogenous. This is natural, as most computer models
are not intended to simulate detail, nor do they need to.
But for aficionados of detail, this is of course entirely
wrong. Large-scale detailed computer models of neuronal
circuits have recently received much attention as well as
criticism [79,80]. Although a natural next step in comput-
er modeling might seem to require incorporating consid-
erably more detail, our review highlights just how much
detail there is. For every cell type — and there is a lot of
them [70–72] — there is a corresponding multiplicity of
STSP learning rules and short-term dynamics. Yet, to
understand the brain and synaptic diseases such as au-
tism, anxiety, or epilepsy [81], it appears that we have no
choice but to grapple with STSP. The task that lies ahead
is nothing short of formidable, as we have just barely
scratched the surface.

Acknowledgements
We thank Alanna Watt, Ben Philpot, Ole Paulsen, Abhishek Banerjee,
Txomin Lalanne, Elvis Cela, Therese Abrahamsson, Arne Blackman, and
Rui P. Costa for help and useful discussions. R.S.L. was funded by the Allen
Institute for Brain Science and wishes to thank the Allen Institute founders,
Paul G. Allen and Jody Allen, for their vision, encouragement, and support.
P.J.S. was funded by CFI LOF 28331, CIHR OG 126137, CIHR NIA
288936, and NSERC DG 418546-2.

References and recommended reading
Papers of particular interest, published within the period of review,
have been highlighted as:

! of special interest
!! of outstanding interest
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81. Lüscher C, Isaac JT: The synapse: center stage for many brain
diseases. J Physiol 2009, 587:727-729.

Synapse-specific plasticity Larsen and Sjöström 135
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