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Neocortex: a lean mean memory storage machine
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Connectivity patterns of neocortex exhibit several odd properties: for example, most neighboring excitatory neurons do 
not connect, which seems curiously wasteful. Brunel’s elegant theoretical treatment reveals how optimal information 
storage can naturally impose these peculiar properties.

The connectivity patterns among neurons are 
a key determinant of brain computations. As 
a wealth of information on neocortical micro-
circuit connectivity patterns has accumulated 
over the past decade1–4, several bewildering 
properties have emerged. First, connectivity 
among neighboring excitatory pyramidal cells 
is sparse, so that most pairs of nearby neurons 
are not actually connected. Second, bidirection-
ally connected pairs of neurons are generally 
overrepresented compared to what one would 
expect from a random network. Finally, recip-
rocally connected neurons are also coupled with 
particularly strong synapses. This arrangement 
seems mysteriously inefficient. For example, 
why do most neighboring excitatory neurons 
not talk directly to each other when they are 
physically capable of doing so4?

In this issue of Nature Neuroscience, Brunel5 
proposes a plausible explanation for these 
unexpected features. By building on his earlier 
work on cerebellar microcircuits6, he argues 
that all these properties may arise solely from 
neocortical microcircuits being optimized for 

information storage. To show this, he used a 
combination of analytical mathematics and 
computer simulations with the assumption 
that the cortical microcircuit can be viewed 
as an attractor network that operates at  
maximum information storage capacity.

In symmetrically connected recurrent 
neural networks7, stored memories can be 
thought of as stable neuronal activity pat-
terns, known as attractor states. These pat-
terns are stable because they correspond to 
local minima in an energy landscape, and the 
neural network is therefore attracted to them 
much like a ball rolling down a hill (Fig. 1a). 
The specific neuronal activity pattern of each 
attractor is defined by the weights of syn-
apses linking neurons so that each memory 
is distributed across the network. The net-
work also has to accommodate multiple pat-
terns, which means the permissible weight 
space occupies a small volume in the total 
space of all possible weight values. For each 
new memory added, another constraint is 
imposed on the weights, so the permissible 
space shrinks as more information is stored. 
Even in a small recurrent network, there is 
a large number of these synaptic weights, 
so this space is of high dimensionality; to 
provide intuition, we illustrate only three 
dimensions (Fig. 1b).

In the presence of noise, the volume of per-
missible weights shrinks even further because 
the neural network then needs a safety factor 
to ensure correct recollection of its memories. 
It is unclear precisely how much noise to add 
in the theoretical treatment to emulate its neu-
robiological counterpart, since what is noise 
and what is signal in real neurons is subject 
to considerable debate8. What emerges clearly 
in Brunel’s theory5, however, is that as the 
volume of permissible weights shrinks with  
increasing safety factor, it will invariably end 
up at a point with most weights being zero 

and only a few nonzero weights remaining  
(Fig. 1b). This means that in an optimal neural  
network that is operating at maximal capa- 
city and with maximal tolerance to noise, most 
weights have to be zero for memory retrieval 
to function correctly.

Because zero-valued synaptic weights  
translate into ineffectual connections, this 
implies that most neighboring pairs of neu-
rons should not be connected. This finding 
helps explain why many neighboring neurons 
do not connect with functional synapses even 
though they are so close that their axons and 
dendrites can touch4.

This sparsity of connectivity has been 
shown before, for example, by Brunel himself 
for cerebellar Purkinje cells6. In the present 
study5, Brunel extends his theoretical treat-
ment to reveal that satisfying these condi-
tions of optimality also leads to several other 
properties that have already been experimen-
tally found in neocortical microcircuits1–3. 
These include an over-representation of 
reciprocally connected pairs of neurons 
and, furthermore, stronger synaptic strength 
between such bidirectional connections. 
These predicted properties closely match 
those found experimentally in young visual 
cortex layer 5 pyramidal cell connections1, 
suggesting that the neocortex may be opti-
mized for information storage.

Empirically, connectivity patterns differ 
between cortical areas1,2. Why might this 
be so, if these different networks are meet-
ing the same optimality principles? One idea 
is that statistics of connectivity also depend 
on the functional nature of stored patterns3. 
For example, the over-representation of 
bidirectionally connected neurons could 
result from the persistency of neuronal 
representations9,10. Such persistency may 
vary among different cortices. To provide a 
specific example, because the autocorrelation 
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time scale of visual stimuli may be greater 
than that of whisker stimulation, there is a 
longer persistency of visual representations. 
Taken together, this could explain why recip-
rocal connections between pyramidal cells are 
over-represented in visual1 but not in barrel 
cortex2. To address the statistics of bidirec-
tional connections in barrel cortex2, Brunel 
analyzed a different scenario with activity 
patterns that changed sequentially in trajec-
tories7 and found that reciprocal connections 
were indeed no longer over-represented, in 
agreement with the experimental findings in 
barrel cortex2.

However, Brunel ends the title of his paper—
“Is cortical connectivity optimized for storing 
information?”—with a question mark, imply-
ing a degree of hesitation. There may be good 
reason for this hesitation because the match 
with the biological data is not perfect. For 
example, the synaptic weight distribution 
has a long tail1 that Brunel’s theory does not 
predict5, yet other theories do while covering 
some of the other predictions as well10,11. It 
is, in other words, possible to predict differ-
ent values for the same statistics with other 
starting assumptions about what should  
be optimal.

Of course, the neocortex may not be opti-
mal for information storage. In fact, it was 
recently reported that, surprisingly, pyrami-
dal cells in visual cortex of mature animals 
do not seem to interconnect at all, neither 

bidirectionally nor unidirectionally12. The 
biological data that Brunel relied on for vali-
dation of his theory were collected from juve-
nile animals1, so there are developmental and 
other experimental caveats to consider here 
too, making it hard to pin down the ground 
truth with certainty.

Nevertheless, the history of optimization 
approaches in biology suggests that we are bet-
ter off trying to answer “why” questions using 
optimization theories than not13. If one wants 
to make sense of the zoo of biological obser-
vations and construct a systematic theory of 
biological structure and function that also tells 
us why things should work the way they do, 
there are not many alternatives.

So where do we go next? One could 
increase the biological complexity of the 
theoretical models in an attempt to explain a 
larger set of experimental observations and 
to generate predictions of greater specific-
ity. It would be interesting to see whether 
Brunel’s theory could be extended to multiple 
classes of excitatory and inhibitory neurons 
and whether it could incorporate constraints 
arising from morphological differences and 
homeostatic regulation of connectivity14,15. 
In this way, theoretical predictions would 
be put to the test against the ever-increas-
ing data on connectivity among different  
neuronal classes1–4,12.

As scientists we derive satisfaction  
from explaining puzzling properties of living  

matter. Brunel’s theory is elegant in its 
appealing conceptual simplicity, and the 
overall match with the biological data 
is intriguing. It is also quite pleasing to 
find concrete evidence that our brains are  
actually optimal.
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Figure 1  Memory storage in recurrently connected neural networks is optimal when most synaptic strengths are zero. (a) Each memory (m1, m2, 
m3, . . .) can be thought of as the bottom of a well in an energy landscape7. Starting out at a high energy state, the neural network subsequently 
falls into the closest basin of attraction, in this example recalling memory m2. (b) To store n memories, synaptic weights (w1, w2, w3) must be in a 
permissible space (hollow region in blue box) constrained by n planes (red), but as the tolerance of the neural network to noise is increased,  
this space shrinks, eventually becoming a single point. Brunel shows5 that this optimal point corresponds to most synaptic weights being  
zero (w1 and w2 here): that is, most neighboring neurons should not be connected at optimality, which is precisely what has been found in 
neocortical microcircuits1–4.
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